Resampling for Fuzzy Clustering

نویسنده

  • Christian Borgelt
چکیده

Resampling methods are among the best approaches to determine the number of clusters in prototype-based clustering. The core idea is that with the right choice for the number of clusters basically the same cluster structures should be obtained from subsamples of the given data set, while a wrong choice should produce considerably varying cluster structures. In this paper I give a brief overview how such resampling approaches can be transferred to fuzzy and probabilistic clustering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation

The fuzzy c-means (FCM) algorithm is a popular fuzzy clustering method. It is known that an appropriate assignment to feature weights can improve the performance of FCM. In this paper, we use the bootstrap method proposed by Efron [Efron, B., 1979. Bootstrap methods: Another look at the jackknife. Ann. Statist. 7, 1–26] to select feature weights based on statistical variations in the data. It i...

متن کامل

A Fuzzy Clustering Approach for Missing Value Imputation with Non-Parameter Outlier Test

Missing value is a challenging issue in data mining, as information deficiency negatively affects both data quality and reliability. This paper focuses on an algorithm of a fuzzy clustering approach for missing value imputation with noisy data immunity. The PCFKMI (Pre-Clustering based Fuzzy K-Means Imputation) method aggregates data instances to more accurate clusters for further appropriate e...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

Water Quality Zoning of Rivers by the Technique of Fuzzy Clustering Analysis

Zoning the pollution of a river may be the first or even the most important step in water quality management. In order to resolve its pollution, fuzzy clustering analysis may be used whenever a composite classification of water quality incorporates mutiple parameters&#10 &#10In such cases, the technique may be used as a complement or an alternative to comprehensive assessment. In fuzzy cluster...

متن کامل

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2007